Molekulare Tumorklassifizierung durch KI Logo of esanum https://www.esanum.de

Molekulare Tumorklassifizierung durch KI

Für eine zielgerichtete Therapie des kolorektalen Karzinoms benötigen die behandelnden ÄrztInnen Informationen über den molekularen Subtyp des Tumors. Computer könnten dafür digitale Gewebebilder analysieren. Entwickelt hat die Methode ein Forschungsteam des Universitätsspitals Zürich und der Universität Oxford.

Effizientere Methode für Dickdarmkrebs-Prognosen

Für eine zielgerichtete Therapie des kolorektalen Karzinoms benötigen die behandelnden ÄrztInnen Informationen über den molekularen Subtyp des Tumors. Computer könnten dafür digitale Gewebebilder analysieren. Entwickelt hat die Methode ein Forschungsteam des Universitätsspitals Zürich und der Universität Oxford.

Dickdarmkrebs ist die dritthäufigste Tumorerkrankung bei Männern und Frauen mit weltweit jährlich rund 1.8 Mio. neuen Fällen. Mit genauen Informationen über den molekularen Subtyp des Tumors mittels RNA-Sequenzierung kann die personalisierte Therapie unterstützt werden. Patientinnen und Patienten mit besonders aggressiven Tumoren können besser erkannt und molekular klassifiziert werden. Das ist allerdings ressourcenintensiv und teuer. Zudem können derzeit bis zu 20 Prozent der Proben nicht abschliessend klassifiziert werden, weil beispielsweise zu wenig Material vorliegt oder die Ergebnisse nicht eindeutig sind.

Weiterentwicklung dank Bildanalyse und künstlicher Intelligenz

Ein Forschungsteam unter der Leitung von Prof. Dr. Viktor Kölzer, Institut für Pathologie und Molekularpathologie des Universitätsspitals Zürich, und von Prof. Dr. Jens Rittscher, Institute of Biomedical Engineering der Universität Oxford, hat nun eine massiv günstigere und schnellere Methode entwickelt: Sie lassen Computer hochauflösende Bilder von histologischen Schnitten mit künstlicher Intelligenz analysieren. So erfahren sie das Genexpressionsprofil des Tumors und erhalten Hinweise darauf, mit welchem Medikament er sich allenfalls behandeln lässt.

Im Gegensatz zum bisherigen Goldstandard – der RNA-Sequenzierung – ist für dieses rein bildgestützte Verfahren kein weiteres Gewebematerial notwendig. Es funktioniert auch an sehr kleinen Gewebefragmenten und erlaubt die Klassifizierung bislang aufgrund technischer Limitationen der Sequenzierung nicht zugänglicher Gewebeproben. Das Verfahren generiert zudem potentiell deutlich geringere Kosten. Bildgestützte Verfahren haben das Potential, die personalisierte Therapie beim Dickdarmkrebs zu revolutionieren. Doch die neue Technik erfordert eine entsprechende Aufbereitung histologischer Schnitte: "Damit wir künstliche Intelligenz für die Tumoranalyse nutzen können, müssen wir die Pathologie digitalisieren", sagt Kölzer. 

Strategisch bedeutsam für die personalisierte Medizin

Im April dieses Jahres hat Kölzer am USZ die Professur für computergestützte Bildanalyse in der Pathologie angetreten. Der erste Lehrstuhl dieser Art in der Schweiz ist nach Aussage der ForscherInnen von grosser strategischer Bedeutung für die personalisierte Medizin. Begonnen hat Kölzer die Arbeit am KI-gestützten Verfahren während eines Aufenthalts an der Universität Oxford, wo er im multi-institutionellen Stratification in Colorectal Cancer Consortium breite interdisziplinäre Unterstützung durch PathologInnen, BioinformatikerInnen, KlinikerInnen und StatistikerInnen verschiedenster Institute und Zentren fand. 

Für die Studie wurden 1.553 Scans von Gewebeschnitten mittels neuester Verfahren maschinellen Sehens und künstlicher Intelligenz mit RNA-Expressionsprofilen, Genmutationen und klinischen Verlaufsdaten analysiert. Nun muss die neue Methode in prospektiven, randomisierten klinischen Studien validiert werden. Noch arbeiten die Pathologen weitgehend analog – doch das könnte sich ändern, selbst in Ländern mit geringeren Ressourcen. Dazu sagt Kölzer: "Nach der Validierung könnte man die Klassifizierung kolorektaler Tumoren zentralisieren und die Technik verfügbar machen". Scans histologischer Schnitte könnten an universitäre Zentren gesandt, dort ausgewertet und die Resultate auf elektronischem Weg kommuniziert werden. Langfristig könnte die Methode auch bei anderen Tumortypen und sogar bei anderen Erkrankungen zum Einsatz kommen.