Haltbarkeitsdatum abgelaufen? Neuer Food-Scanner ermöglicht Check Logo of esanum https://www.esanum.de

Haltbarkeitsdatum abgelaufen? Neuer Food-Scanner ermöglicht Check

Mit einem mobilen Food-Scanner sollen Verbraucher und Supermarktbetreiber in Zukunft prüfen können, ob Nahrungsmittel verdorben sind. Das Gerät im Hosentaschenformat ermittelt per Infrarotmessung den Reifegrad und die Haltbarkeit von Gemüse oder Obst und zeigt das Ergebnis per App an.

Infrarot, Cloud und App gegen das Verderben

Mit einem mobilen Food-Scanner sollen Verbraucher und Supermarktbetreiber in Zukunft prüfen können, ob Nahrungsmittel verdorben sind. Das Gerät im Hosentaschenformat ermittelt per Infrarotmessung den Reifegrad und die Haltbarkeit von Gemüse oder Obst und zeigt das Ergebnis mithilfe einer App an. Fraunhofer-Forscherinnen und -Forscher haben das System, das als Demonstrator vorliegt, gemeinsam mit Partnern im Auftrag des Bayerischen Staatsministeriums für Ernährung, Landwirtschaft und Forsten entwickelt.

Kann man den Joghurt noch essen? Ist das Gemüse noch genießbar? Im Zweifelsfall landen Lebensmittel nicht auf dem Teller, sondern in der Tonne. Viele Produkte werden weggeworfen, weil sie nicht mehr appetitlich aussehen, kleine Schönheitsfehler aufweisen oder das Mindesthaltbarkeitsdatum abgelaufen ist. Allein in Bayern wandern 1,3 Millionen Tonnen Nahrungsmittel jährlich unnötigerweise in den Abfall. Mit dem Bündnis "Wir retten Lebensmittel" will das Bayerische Staatsministeriums für Ernährung, Landwirtschaft und Forsten mit insgesamt 17 Maßnahmen der Verschwendung entgegenwirken.

Eines der Projekte: Ein Food-Scanner soll dazu beitragen, die Verluste am Ende der Wertschöpfungskette zu reduzieren – im Handel und beim Verbraucher. Das preisgünstige Gerät im Hosentaschenformat soll künftig den tatsächlichen Frischegrad von Lebensmitteln feststellen – sowohl bei abgepackten als auch bei nicht abgepackten Waren. Forscherinnen und Forscher des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung IOSB, des Fraunhofer-Instituts für Verfahrenstechnik und Verpackung IVV, der Technischen Hochschule Deggendorf und der Hochschule Weihenstephan-Triesdorf entwickeln den kompakten Food-Scanner, der als Demonstrator mit Daten für zwei Lebensmittel vorliegt und auch eine Haltbarkeitsabschätzung ermöglicht.

Echtheit von Lebensmitteln per Infrarotlicht feststellen

Herzstück des mobilen Scanners ist ein Nahinfrarot (NIR)-Sensor, der den Reifegrad des Nahrungsmittels bestimmt und ermittelt, wie viele und welche Inhaltsstoffe es enthält. "Infrarotlicht wird punktgenau auf das zu untersuchende Produkt geschickt, anschließend misst man das Spektrum des reflektierten Lichts. Die absorbierten Wellenlängen lassen Rückschlüsse auf die chemische Zusammensetzung der Ware zu", erläutert Dr. Robin Gruna, Projektleiter und Wissenschaftler am Fraunhofer IOSB, die Funktionsweise des Verfahrens. "Im Labor kann man schon lange per Nahinfrarotspektroskopie Inhaltsstoffe quantifizieren. Neu ist, dass dies jetzt mit kleinen Low-Cost-Sensoren möglich ist", sagt Julius Krause, Kollege im Team von Gruna.

"Lebensmittel werden oftmals gefälscht, beispielsweise werden Lachsforellen als Lachs verkauft. Auch die Echtheit eines Produkts kann man mit unserem Gerät feststellen, nachdem es entsprechend eingelernt wurde. Gepanschtes Olivenöl lässt sich ebenfalls als solches identifizieren", so der Physiker. Doch dem System sind auch Grenzen gesetzt: Es bewertet ausschließlich die Produktqualität von homogenen Nahrungsmitteln. Heterogene Produkte mit verschiedenen Zutaten wie beispielsweise Pizza lassen sich aktuell nur schwer prüfen. Hierfür erforschen die Wissenschaftler ortsauflösende Technologien wie bildgebende Spektroskopie (Hyperspectral Imaging) und Fusionsansätze mit Farbbildern und Spektralsensoren.

Um die Qualität der Lebensmittel basierend auf den Sensordaten und den gemessenen Infrarotspektren bestimmen und Prognosen für die Haltbarkeit errechnen zu können, entwickeln die Forscherteams intelligente Algorithmen, die nach entsprechenden Mustern und Gesetzmäßigkeiten in den Daten suchen. "Durch Maschinelles Lernen können wir das Erkennungspotenzial steigern. In unseren Tests haben wir Tomaten und Hackfleisch untersucht", sagt Gruna. So wurden etwa die gemessenen NIR-Spektren von Hackfleisch mithilfe statistischer Verfahren mit dem mikrobiellen Verderb korreliert und wurde die weitere Haltbarkeit des Fleisches davon abgeleitet. Umfangreiche Lagertests, bei denen die Forscherteams die mikrobiologische Qualität sowie weitere chemische Parameter unter verschiedenen Lagerbedingungen erfassten, zeigten eine gute Übereinstimmung der ermittelten und der tatsächlichen Gesamtkeimzahl.

App zeigt Haltbarkeit der Lebensmittel an

Der Scanner sendet die gemessenen Daten zur Analyse per Bluetooth an eine eigens entwickelte Cloud-Datenbank, in der die Auswerteverfahren hinterlegt sind. Die Messergebnisse werden anschließend an eine App übertragen, die dem Verbraucher die Ergebnisse anzeigt, wie lange das Lebensmittel bei den jeweiligen Lagerbedingungen noch haltbar ist oder ob es bereits überlagert wurde. Darüber hinaus erfährt der Verbraucher, wie er Lebensmittel alternativ verwenden kann, wenn deren Lagerdauer abgelaufen ist. Für Anfang 2019 ist die Testphase in Supermärkten geplant: Dann soll untersucht werden, wie der Verbraucher das Gerät annimmt. Insgesamt ist ein breiter Einsatz denkbar, vom Rohstoff bis zum Endprodukt. Eine frühzeitige Erkennung von Qualitätsveränderungen ermöglicht alternative Verwertungswege und trägt zur Reduzierung der Verluste bei.